equivalence relation - определение. Что такое equivalence relation
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое equivalence relation - определение

REFLEXIVE, SYMMETRIC AND TRANSITIVE RELATION
EquivalenceRelation; Graphing equivalence; Equivalency; Identification (mathematics); Equivalence relations; ≍; Geometric equivalence; ≎; ≭; ≑; Fine (mathematics); Fundamental theorem of equivalence relations
  • logical matrices]] (colored fields, including those in light gray, stand for ones; white fields for zeros). The row and column indices of nonwhite cells are the related elements, while the different colors, other than light gray, indicate the equivalence classes (each light gray cell is its own equivalence class).

equivalence relation         
<mathematics> A relation R on a set including elements a, b, c, which is reflexive (a R a), symmetric (a R b => b R a) and transitive (a R b R c => a R c). An equivalence relation defines an equivalence class. See also partial equivalence relation. (1996-05-13)
equivalence relation         
¦ noun Mathematics & Logic a relation between elements of a set which is reflexive, symmetric, and transitive and which defines exclusive classes whose members bear the relation to each other and not to those in other classes.
Equivalency         
·noun ·same·as Equivalence.

Википедия

Equivalence relation

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation.

Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class.